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is important for sustainable forest management, as it relates to a wide variety of
ecosystem processes and services. Lidar data have proven particularly useful for measuring or estimating a
suite of forest structural attributes such as canopy height, basal area, and LAI. However, the potential of this
technology to characterize forest succession remains largely untested. The objective of this study was to
evaluate the use of lidar data for characterizing forest successional stages across a structurally diverse,
mixed-species forest in Northern Idaho. We used a variety of lidar-derived metrics in conjunction with an
algorithmic modeling procedure (Random Forests) to classify six stages of three-dimensional forest
development and achieved an overall accuracyN95%. The algorithmic model presented herein developed
ecologically meaningful classifications based upon lidar metrics quantifying mean vegetation height and
canopy cover, among others. This study highlights the utility of lidar data for accurately classifying forest
succession in complex, mixed coniferous forests; but further research should be conducted to classify forest
successional stages across different forests types. The techniques presented herein can be easily applied to
other areas. Furthermore, the final classification map represents a significant advancement for forest
succession modeling and wildlife habitat assessment.

© 2009 Elsevier Inc. All rights reserved.
1. Introduction

Quantification of forest structure is critical for sustainable forest
management (O'Hara et al., 1996) as it relates to a wide variety of
ecosystem processes and services, including gas exchange, productiv-
ity, biodiversity, and water interception (Deguchi et al., 2006; Fuller
et al., 2007; Law et al., 2001; Roland & Taylor, 1997). Forest structure
can be quantified in myriad ways including the prediction of
individual components of structure (e.g. leaf area index, aboveground
biomass, basal area; Clark et al., 2008; Coops et al., 2007; Saatchi et al.,
2007), or through measuring three-dimensional attributes related to
forest succession (Bergen & Dronova, 2007; Hao et al., 2007). Light
detection and ranging (lidar) data have proven particularly useful for
estimating a suite of forest structural attributes such as canopy height,
biomass, basal area, and LAI (Coops et al., 2007; Dubayah & Drake,
2000; Lefsky et al., 1999; Nelson et al., 1988; Roberts et al., 2005;
White et al., 2000).

In terms of forest management, selecting which approach to use is
dependent upon specific management objectives as well as the time
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scale of interest. For example, at short time scales (monthly to inter-
annual)measuring or predicting specific forest structural characteristics
(e.g., leaf area index) may be sufficient for gaining an understanding of
forest processes such as diurnal or annual carbon flux. However, at
longer temporal scales (decade- to century-scales) successional
dynamics become the primary drivers of many forest processes, hence
measuring three-dimensional structural attributes related to forest
succession and standdevelopment is important for predictingprocesses
such as long-term carbon sequestration (Shugart, 2000). Furthermore,
accurate classifications of forest succession that cover large spatial
extents are critical to achieving many goals of sustainable forest
management. For example, classifications of forest succession can be
used to characterize wildlife habitat (Cody, 1985; Helle, 1985; Helle &
Monkkonen, 1990) and future forest conditions via forest succession
models (Busing et al., 2007; Shugart, 2000; Vargas et al., 2008).

Forest successional stage can be directly assessed in the field via
traditional forest inventory techniques. Although accurate, field-based
classifications of forest succession are often limited to small spatial
extents (Bergen & Dronova, 2007). In order to be useful for sustainable
forest management, classifications of forest successionmust cover large
areas. The synoptic data provided by remote sensing instruments have
provided a means to characterize forest successional stage across large
spatial extents (Song et al., 2007). Indeed, data collected by optical
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Fig. 1.Hypothetical discrete return lidar pulse height distributions (A-1:A-4) and corresponding forest successional stages (B-1:B-4). (A-1:A-4) Lidar pulse height distributionswithin
a forest inventory plot. The black line is the probability density function. The red and green lines represent the mean andmodal lidar height, respectively. The blue tic marks on the y-
axis correspond to the height in meters of individual lidar returns. (B-1:B-4) Graphical depictions of four different forest successional stages: stand initiation (B-1), youngmultistory
(B-2), understory reinitiation (B-3), and oldmultistory (B-4). (For interpretation of the references to color in this figure legend, the reader is referred to thewebversion of this article.)
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sensors have been used to classify forest succession or predict stand age
with varying degrees of accuracy (Bergen &Dronova, 2007; Cohen et al.,
1995; Falkowski et al., 2005; Miller et al., 2003; Song & Woodcock,
2002). However, forest succession is a three-dimensional process, and
passive optical sensors are much less sensitive to three-dimensional
canopy structure than lidar instruments.

Since lidar actively measures the three-dimensional arrangement
of forest canopies, providing accurate and precise estimates of forest
structural attributes, it has the potential to classify forest succession
across large spatial extents. Lidar metrics characterizing the distribu-
tion and density of vegetation within forest inventory plots differ
depending upon the corresponding successional stage, making it
possible to classify forest successional stages via lidar data. For
example, in a forest undergoing stand initiation, the majority of lidar
pulse returns (Fig.1A-1 and B-1) are reflected off of or near the ground
surface, with few reflecting off of seedlings and saplings (heightb3m).
In a young multistory forest (Fig. 1A-2 and B-2) lidar pulse returns
exhibit a multi-modal distribution, with one mode occurring at the



Fig. 2. The Palouse Range study area (46° 48′ N; 116° 52′ W). A lidar derived canopy height layer overlaid with a hillshade layer derived from the lidar digital elevation model.
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ground surface and others in the forest canopy (height ~10–20 m). As
the forest transitions into more advanced stages of succession, the
distribution of lidar pulse returns within an inventory plot change
dramatically. Thus, lidar height metrics characterizing the distribution
and density of forest vegetation should prove particularly useful in the
classification of forest successional stage.

The few studies that have used lidar data to classify forest
successional stage have been limited to differentiating between two
successional classes, a single story class and a multi-story class
(Zimble et al., 2003), or have used an integration of hyperspectral
imagery and lidar data to classify structure-based cover type classes
(Hill & Thomson, 2005). To be useful for quantifying ecological
processes and wildlife habitat relationships, and to benefit sustainable
forest management, classifications of forest succession must be
grounded in the dynamics of stand development and reflect all
potential stages of forest development (O'Hara et al., 1996).

The objective of this study is to use discrete return lidar to classify
forest successional stage across a structurally diverse, mixed-species
forest in Northern Idaho, USA. Specifically, we focus upon using
various lidar height metrics to classify forest successional stage
according to a classification scheme specifically developed for forests
of the Inland Northwest, USA (O'Hara et al., 1996). In addition to
classifying forest successional stage, we use an algorithmic modeling
procedure to (i) determine the most important lidar metrics for
classifying forest successional stage and (ii) select the most
parsimonious classification model while retaining the highest degree
of classification accuracy as possible. Classification performance is
evaluated via traditional accuracy assessment statistics, and by
determining if the algorithmic model produced logical, ecologically
meaningful classifications. Furthermore, a spatial assessment of
classification uncertainty is conducted to explore potential limitations
of using lidar data to classify forest successional stage across
structurally diverse forested regions.
2. Methods

2.1. Study area and data collection

The focal area of our study is the Palouse Range (~30,000 ha;
Latitude 46° 48′ N, Longitude 116° 52′ W), which lies at the extreme
western extent of the Clearwater Mountains in Northern Idaho, USA
(Fig. 2). The Palouse Range is topographically complex and primarily
comprised of temperate mixed-conifer forest. Dominant tree species
across this study area include: Pinus ponderosa C. Lawson var. scopu-
lorum Engelm., Pseudotsuga menziesii (Mirb.) Franco var. glauca
(Beissn.) Franco, Abies grandis (Douglas ex D. Don) Lindl., Thuja
plicata Donn ex D. Don, and Larix occidentalis Nutt. Timber companies
own a majority of the land, but there also are many private and public
land holdings. This includes a large tract of experimental forestland,
owned by the University of Idaho, and a small parcel formerly owned
by The Nature Conservancy, which is protected for biodiversity
conservation. The unique management goals and strategies of each
of these landowners, coupled with the regions topographic complex-
ity, have created a forest that is diverse in species composition, forest
age, and structure, making it an ideal location to test the utility of lidar
data for the classification of forest successional stage.

Eighty-one forest inventory plots were located across the study
area using a stratified systematic sampling protocol. The study area
was stratified into nine unique combinations of elevation and solar
insolation. Inventory plots were then systematically selected within
each stratum based upon a Landsat-derived leaf area index layer
(Pocewicz et al., 2004). Since elevation and solar insolation influence
forest productivity and species composition, and LAI describes current
forest canopy conditions, employing theses strata ensured that the
eighty-one forest inventory plots covered the full range of forest
species composition and canopy structure conditions across the study
area.

During the summer of 2003, a 404.69 m2
fixed-radius (11.35 m

radius) forest inventory plot was installed at each sample location. The
diameter at breast height (DBH), species, height, as well as distance
and bearing from plot center, was measured and recorded for each
tree (DBHN2.7 cm) falling within the fixed radius plot. Seedlings and
saplings were also measured and tallied across the entire inventory
plot. Falkowski et al. (2005) provide additional details regarding the
sampling design and data collection protocols.

2.2. Forest successional stage classification scheme

Using a rule-based classification procedure presented by O'Hara
et al. (1996), each of the eighty-one forest inventory plots was
categorized into the appropriate forest successional stage based upon
the forest inventory field data. The classification scheme was
specifically developed for forests of the Inland Northwest, USA, and
recognizes seven different structural stages of forest succession;
stand initiation, open stem exclusion, closed stem exclusion,
understory reinitiation, young multi-strata, old forest multi-strata,
and old forest single-stratum. O'Hara et al. (1996) present detailed



949M.J. Falkowski et al. / Remote Sensing of Environment 113 (2009) 946–956
graphical depictions and verbal descriptions of the seven succes-Table 1

Forest successional stage class descriptions adapted from O'Hara et al. (1996).

Class Description Number of
plots in class

Open Treeless or one broken stratum of trees or shrubs
present. Limited establishment of new individuals.

9

Stand Initiation
(SI)

Growing space reoccupied by seedlings, saplings,
or shrubs following stand replacing disturbance.

7

Understory
Reinitiation
(UR)

Older cohort of trees being replaced by new
individuals. Broken overstory with an understory
stratum present.

7

Young Multistory
(YMS)

Two or more cohorts of trees from a variety of age-
classes. No large or medium trees present

30

Mature
Multistory
(MMS)

Two or more cohorts of trees from a variety of age-
classes. Medium trees present. Large trees absent

11

Closed Stem
Exclusion
(CSE)

One closed canopy stratum present. Limited
establishment of new individuals due to low light
availability in the understory.

11

Old Multistory
(OMS)

Two or more cohorts of trees from a variety of age-
classes. Dominated by large trees.

6

sional stage classes. For the purpose of this study, the aforemen-
tioned categories were slightly modified to reflect the successional
stages present across the Palouse Range study area (Table 1).
Specifically, an ‘Open’ class was added to account for areas within
the Palouse Range study area that do not support tree growth (e.g.,
agricultural lands near the forest boundary and wet meadows within
the forested area). Furthermore, the Old Forest Single-Stratum class
presented by O'Hara et al. (1996) was eliminated because the
structural stage is not present across the Palouse Range study area.
Table 1 presents verbal descriptions of the forest successional stages
found across the Palouse Range.
Table 2
Lidar metrics used in the classification.

Metric name Metric description

HMIN Minimum Height
HMAXa Maximum Height
HRANGE Range of Heights
HMEANa,b Mean Height
HMEDIANa,b Median Height
HMODEb Modal Height
NMODES Number of Modes
HAAD Average Absolute Deviation of Heights
HMAD Median Absolute Deviation of Heights
HSTD Standard Deviation of Heights
HVAR Variance of Heights
HSKEW Skewness of Heights
HKURT Kurtosis of Heights
HCV Coefficient of Variation of Heights
H05PCT Heights 5th Percentile
H10PCT Heights 10th Percentile
H25PCTb Heights 25th Percentile
H50PCT Heights 50th Percentile (Median)
H75PCTc Heights 75th Percentile
H90PCT Heights 90th Percentile
H95PCTc Heights 95th Percentile
CANOPYa,b Canopy Cover (Vegetation Returns/Total Returns⁎100)
STRATUM0 Percentage of Ground Returns=0 m
STRATUM1 Percentage of Non-Ground ReturnsN0 m and b=1 m
STRATUM2b Percentage of Vegetation ReturnsN1 m and b=2.5 m
STRATUM3 Percentage of Vegetation ReturnsN2.5 m and b=10 m
STRATUM4b Percentage of Vegetation ReturnsN10 m and b=20 m
STRATUM5a,b Percentage of Vegetation ReturnsN20 m and b=30 m
STRATUM6 Percentage of Vegetation ReturnsN30 m
TEXTURE Standard Deviation of Non-Ground ReturnsN0 m and b=1 m
PCT1 Percentage 1st Returns
PCT2 Percentage 2nd Returns
PCT3 Percentage 3rd Returns
NOTFIRST Percentage 2nd or 3rd Returns

a Selected as an important variable in the 6 class model.
b Selected as an important variable in the 7 class model.
c Multi-collinear variable removed via QR decomposition.
2.3. Lidar acquisition and processing

Discrete return lidar data (~1.95 m nominal post spacing; ~0.26
lidar pulses per m2) were acquired in summer 2003 across the entire
study area with an Optech ALTM30 system owned and operated by
Horizons, Incorporated (http://www.horizonsinc.com/). The system
operated at a wavelength of 1064 nm and was flown at approximately
2500 m above terrain elevation. Once acquired, the lidar data were
separated into ground and non-ground returns using the Multi-scale
Curvature Classification algorithm (Evans & Hudak, 2007). Following
classification, a high resolution (1 m) digital elevation model (DEM)
was created from the ground returns using an iterative finite
difference (IFD) interpolation algorithm employed by the ArcInfo
TOPOGRIDmodule. The interpolated DEM had root mean square error
(RMSE) of 0.306 m and 0.166 m in high canopy cover and low canopy
cover forests, respectively (Evans & Hudak, 2007).

The height above ground surface was then calculated for all non-
ground returns through DEM subtraction. For the purpose of this
study, the lidar data were aggregated into 20 m bins (i.e., grid cells)
approximately the same size as the forest inventory plots. A variety of
candidate classification variables were calculated from all non-
ground lidar returns (heightN0) within every 20 m bin. These
variables included the percentage of lidar returns within seven
defined canopy height strata, and twenty-one statistics characteriz-
ing the statistical distribution of lidar heights within each 20 m bin.
Canopy cover was also included, and calculated as the percentage of
total returns thatwere above 1m in height. Other lidar heightmetrics
included a texture variable and the percentage of 1st, 2nd, 3rd, and
non-ground lidar returns within each 20 m bin. In total, thirty-four
candidate predictor variables, which have proved useful for char-
acterizing forest structure (Hudak et al., 2006, 2008), were generated
(Table 2).
2.4. Data analysis

2.4.1. The Random Forest classification algorithm
For the purpose of this study, we used the Random Forest (RF)

algorithm (Breiman, 2001) to classify forest successional stage based
upon the thirty-four candidate Lidar height metrics (Table 2). The RF
algorithm is a classification tree technique that has achieved excellent
results in classifying remotely sensed data (Hudak et al., 2008;
Lawrence et al., 2006). Classification tree algorithms are commonly
used to classify remotely sensed data (e.g., Coops et al., 2006;
Falkowski et al., 2005; Lawrence & Wright, 2001) because they are
easily interpretable, can produce accurate results, and can handle
categorical and continuous data simultaneously (Breiman et al., 1984;
Cutler et al., 2007). The major advantages of the RF classification tree
algorithm over traditional classification tree techniques are: (1)
through a bootstrap approach it can achieve substantially higher
accuracies than single classification tree methods, while simulta-
neously addressing over-fitting problems associated with traditional
classification tree models, (2) it develops robust (accurate and
unbiased) predictions based on votes across bootstrap replicates, (3)
it is nonparametric and thus unaffected by distributional assumptions,
(4) the GENI statistic used for node splitting can integrate non-linear
variable interactions, and (5) it provides a reliable, internal estimate of
classification accuracy (Breiman, 2001; Cutler et al., 2007; Lawrence
et al., 2006; Prasad et al., 2006). The RF algorithm develops
classifications by growing numerous (100 s to N1000 s) classification
trees from a random subset of training data (approximately 63%
random subset), while randomly permuting predictor variables at
each node (e.g., Table 2). The correct classifications, or predictions, are
then determined by selecting themost common classification result at

http://www.horizonsinc.com/


Fig. 3. Variable importance plots for the seven-class (A) and six-class (B) forest
successional stage models. Units are the percent reduction in classification accuracy
that would result from removing a given classification variable.

950 M.J. Falkowski et al. / Remote Sensing of Environment 113 (2009) 946–956
each node within the group of multiple trees (Breiman, 2001;
Lawrence et al., 2006; Prasad et al., 2006). Bootstrap error estimates
and accuracies are calculated for each tree in the forest by classifying
the portion of training data not selected for classification model
development (approximately 37% of the training data). After all the
trees in the forest are grown, overall error and accuracy is calculated
by averaging error rates across all trees in the forest; this is analogous
to cross-validated estimate of error and accuracy (Cutler et al., 2007).
The algorithm also calculates the influence each predictor variable has
upon model accuracy based upon the ratio of improvement in the
mean squared error across bootstrap replicates, which can be used to
determine the relative importance of each variable used in the
classification. For this study, the RF algorithmwas implemented as the
RandomForest package (Liaw & Wiener, 2002) in the R statistical
program (www.r-project.org; R Development Core Team, 2007).

2.4.2. Model selection and variable reduction
Although the RF algorithm is non-parametric, a model selection

procedure (i.e., variable reduction) was employed to select the
optimal lidar variables to use in the classification of forest successional
stage. The model selection procedure was formulated to develop the
most parsimonious classification model, while retaining the highest
possible classification accuracy. In order to reduce data redundancy
and improve overall model interpretability, multi-collinear lidar
classification variables were identified and removed via a multivariate
variable screening process based upon Gram–Schmidt QR-Decom-
position (Gentle et al., 2005; Golub & Van Loan, 1996). Classification
variables were then automatically selected by iteratively running the
RF algorithm and sub-setting classification variables based upon a
mean square error ratio threshold. The final classification model is
arrived at based on the criteria of smallest total and within class
errors, and fewest numbers of classification variables. In order to
stabilize individual class error, each RF model was run with 3000
bootstrap replicates (i.e., individual classification trees).

2.4.3. Classification of forest successional stage
Two separate forest succession classifications were developed; a

seven-class model containing all successional stage categories
(Table 1), and a six-class model that aggregated the (MMS) and
closed stem exclusion (CSE) classes. We chose to aggregate the MMS
and CSE classes for two related reasons: (i) the only structural
difference between the two classes is the presence (MMS) or absence
(CSE) of seedlings and saplings in the forest understory, and (ii) that
fact that the detection and identification of understory components in
multi-story or closed canopy forests can be problematic with lidar
data (Goodwin, 2006; Goodwin et al., 2007; Lee et al., 2004).
Developing two separate classifications and comparing the results
allowed us to explore this potential limitation.

2.4.4. Evaluation of classification accuracy and model performance
Classification accuracy was assessed based upon the bootstrap

error estimates and error matrices calculated by the RF algorithm.
Table 3
Classification accuracy statistics for the seven-class classification.

Class Commission error Omission error Class accuracy

Open stem exclusion 0.00 11.11 88.89
Stand initiation 22.22 0.00 100.00
Understory initiation 0.00 14.29 85.71
Young multistory 0.00 3.33 96.67
Mature multistory 36.36 36.36 63.64
Closed stem exclusion 27.27 27.27 72.73
Old multistory 14.29 0.00 100.00
Overall accuracy 90.12
Mean class accuracy 86.80
KHAT 84.51
Overall accuracy, mean class accuracy, and errors of omission and
commission were calculated and examined to assess the accuracy of
each forest successional stage classification. In addition to the
aforementioned error statistics, the uncertainty of successional stage
classifications was evaluated by examining spatial predictions of
maximum probability of occurrence for each class. To achieve this, a
class probability was generated for each successional stage by treating
the votes in the RF nodes matrix as a probability distribution. A
separate map of class probability was then generated along with the
individual class membership(s). Conditional density plots, which
Table 4
Classification accuracy statistics for the six-class classification.

Class Commission error Omission error Class accuracy

Open stem exclusion 0.00 0.00 100.00
Stand initiation 15.85 0.00 100.00
Understory initiation 0.00 14.29 85.71
Young multistory 0.00 3.33 96.67
Mature multistory 8.70 4.55 95.45
Old multistory 18.12 16.67 83.33
Overall accuracy 95.54
Mean class accuracy 93.53
KHAT 93.48

http://www.r-project.org
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display the probability of each SS class occurring at a given level of
each selected classification variable, were also examined to determine
if the RF algorithm produced logical, ecologically meaningful
classifications.

3. Results

3.1. Model selection

The QR decomposition procedure identified and removed two
multi-collinear lidar metrics; the height of the 75th and 95th
percentiles (Table 2). The model selection procedure (i.e., variable
reduction) identified eight lidar height variables to use for developing
the seven-class forest successional stage classification model: mean
Fig. 4. Conditional density plots for the seven-class model. The gray region represents the pr
The probability of the mean lidar height metric being in a particular class. The x-axis is height
canopy cover metric being in a particular class. The x-axis is in percent and the y-axis is pro
height, median height, the modal height, 25th percentile height,
canopy cover, and the density of the 2nd, 4th, and 5th strata (Table 2).
For the six-class successional stage classification model, the model
selection procedure (i.e., variable selection) identified five lidar height
variables to use for developing the classification: mean height,
maximum height, median height, canopy cover, and the density of
the 5th stratum (Table 2).

3.2. Classification accuracy and variable importance

The seven-class forest successional stage classification reported an
overall accuracy of 90.12%, a mean class accuracy of 86.80%, and a KHAT

value of 84.5%. Individual class errors and omission and commission
errors were low (Table 3). However, confusion did occur between the
esence of a particular class and the light grey background represents class absence. (A)
in meters and the y-axis is probability from 0–1. (B) The probability of the lidar derived
bability from 0–1.
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mature multistory (MMS) and closed stem exclusion (CSE) classes,
which had individual class error rates of 27% and 36%, respectively.
Themodel selection procedure (i.e., variable selection) identified eight
lidar metrics to use for developing the seven-class forest successional
stage classification model (Table 2). In terms of variable importance,
canopy cover, and mean height were the most important variables in
the RF classification, followed by the density of the 2nd and 5th height
strata, the median height, height of the 25th percentile, the modal
height, and the density of the 4th stratum (Fig. 3).

Overall accuracy for six-class forest successional stage classifica-
tion, which aggregated the MMS and CSE classes, was 95.54%, with
mean class accuracy and KHAT values of 93.53% and 93.48%,
respectively (Table 4). Individual class errors, omission errors and
commission errors were quite low (Table 4), and there was very little
Fig. 5. Conditional density plots for the six-class model. The gray region represents the prese
probability of the mean lidar metric being in a particular class. The x-axis is height in meter
cover metric being in a particular class. The x-axis is in percent and the y-axis is probability
confusion between the individual classes. Again, the canopy cover and
mean height lidar metrics were identified as the most important
variables in the RF classification, followed by the maximum height,
median height, and density of the 5th stratum (Fig. 3).

3.3. Model evaluation

Of the thirty-four candidate lidar metrics, only nine unique
variables were selected as being important in both the seven- and
six-class forest succession models (Table 2). Of these nine variables,
canopy cover and mean lidar height were selected as the most
important variables in both the seven- and six-class forest succession
models (Fig. 3). Conditional density plotswere examined to determine
if the RF algorithm produced logical, ecologically meaningful
nce of a particular class and the light grey background represents class absence. (A) The
s and the y-axis is probability from 0–1. (B) The probability of the lidar derived canopy
from 0–1.
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classifications. We only present the conditional density plots for the
mean height and canopy cover lidar metrics (Figs. 4 and 5). For the
seven- and six-classmodels, the peak of the conditional density plot of
the mean lidar height metric increases as forests transition from early
to advanced stages of succession. Canopy cover displays a similar
Fig. 6. (A) Successional stage classification map. (B) Maximum probability (classification u
Classification uncertainty statistics. The color of each bar corresponds to the associated certai
land area occupied by each probability class across the study area.
trend; as succession advances canopy cover increases. However, when
the forest is transitioning into the OMS class there is a slight reduction
in canopy cover (Figs. 4 and 5).

The maximum probability of occurrence map (Fig. 6B), which was
used to spatially assess successional stage prediction confidence
ncertainty) map. The red box corresponds to the area of detail presented in Fig. 7. (C)
nty level in the legend. The percentages listed above each bar are the percentage of total



Fig. 7.Detailed view of areawith low levels of classification certainty. A-1, A-2, and A-3 are the uncertainty map, aerial photo, and succession classification, respectively. The red box in
A-1:A-3 corresponds to the area of detail provided in B-1:B-3.
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(Fig. 6A), indicates that most of the study area (~75%) has a
classification confidence greater than 80%. Furthermore, only 3% of
the total area has classification confidence less than 60% (Fig. 6C). In
general, visual interpretation of high spatial resolution ortho-photo-
graphy indicates that the highest classification uncertainties occur in
recently harvested areas exhibiting a high degree of structural
variability (Fig. 7).

4. Discussion

The accuracies of the classifications presented in this study are
similar to or higher than those attained in other studies classifying
forest succession from remotely sensed data. For example, Falkowski
et al. (2005) classified four different successional stages across the
Palouse Rangewith ASTER imagery and attained an overall accuracy of
only 68.4%. In terms of classifying forest succession from lidar data,
Zimble et al. (2003) reported an overall accuracy of 97% when
differentiating between two forest successional stages, while Hill and
Thomson (2005) achieved an overall accuracy of 94% when classifying
ten different structurally based vegetation type classes from a dataset
integrating hyperspectral imagery and lidar data. The current study
demonstrates that lidar data alone can be used to accurately classify
multiple stages of forest succession across fairly large spatial extents
(a ~30,000 ha study area).

Inter-class error rates were relatively low for most of the forest
successional stages classified in this study (Tables 3 and 4). However,
in the seven-class model, the CSE and MMS categories had a relatively
high degree of confusion. This is not surprising given their structural
similarities. The only structural difference between these two classes
is the presence and absence of seedlings or saplings in the understory.
It is also useful to point out that the algorithmic modeling procedure
selected five lidar metrics for the six-class successional stage
classification, while eight variables were identified for the seven-
class model. These results suggest that the characteristics of the lidar
data used in this study, or the metrics that were used, were not
sufficiently able to differentiate seedling and saplings from other
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understory components (e.g., shrubs, downed woody debris).
Furthermore, in closed canopy forests there is a significant reduction
in the number of lidar pulses that reach the forest understory, further
inhibiting the direct characterization of understory components via
lidar data (Goodwin, 2006; Goodwin et al., 2007; Lee et al., 2004).
Considering the importance of understory for evaluating forest
management activities (Kozlowski, 2002), understanding forest
regeneration (Lormier et al., 1994), and characterizing wildlife habitat
(Brokaw & Lent, 1999), further research should explore alternative
methods for modeling understory vegetation. This could perhaps be
facilitated by developing new lidar metrics specifically focused on
quantifying forest understories, or by including other classification
variables that influence the occurrence of understory vegetation (e.g.,
variables quantifying topographic gradients and/or canopy light
interception).

The RF classification algorithm utilized in this study produced
accurate classifications and provided a means to assess the relative
importance of each lidar height metric used to classify forest
successional stage. Of the thirty-four candidate lidar height metrics,
only nine unique variables were selected as being important in both
the seven- and six-class forest succession models (Table 2). Of these
nine variables, canopy cover and mean lidar height were selected as
the most important variables in both the seven- and six-class forest
succession model. The conditional density plots (Figs. 4 and 5)
demonstrate that the RF algorithm produced logical, ecologically
meaningful classifications. For the seven- and six-class models, the
peak of the conditional density plot of the mean lidar height metric
increases as forests transition from early to advanced stages of
succession. This trend reflects the vertical growth of forests through
the successional time sequence. Canopy cover displays a similar trend;
as succession advances canopy cover increases. However, when the
forest is transitioning into the OMS class there is a slight reduction in
canopy cover, representing the creation of canopy gaps as old trees
undergo mortality. In addition to providing insight into RF classifica-
tion rules, the conditional density plots provide a means of assessing
potential sources of classification error. For example, in the seven-
class model, there is substantial overlap in the probability density
function of the mean lidar height metric between the MMS and CSE
classes. There is also substantial overlap in the canopy cover
probability density function between these classes (Fig. 4). The
overlap in these metrics is one potential reason that the MMS and CSE
classes exhibit a relatively large amount of confusion.

In terms of the final classification confidence, the maximum
probability of occurrence map indicates that low classification
confidences typically occur in recently harvested areas across the
entire study area. This may be due to high structural variability in
these areas (i.e., small patches of trees interspersed with large open
areas). High structural variability across small spatial extents could
result in 20 m grid cells (i.e., lidar bins) that have mixed-class
membership, analogous to a mixed pixel in optical remotely sensed
data. It is also worth noting that the classification confidence map
presented herein simply highlights areas where there is high
uncertainty in classification accuracy, but that high uncertainty does
not necessarily indicate incorrect classification. For example, the
information provided in Fig. 7 indicates that, although there is a high
classification uncertainty, the RF algorithm is correctly classifying the
recently harvested area as initiating, young, or regenerating forest.

Although classification accuracies attained via lidar were higher
than previous studies classifying forest successional stage frommulti-
spectral data alone, it is worth pointing out that that these
instruments operate at completely different scales. Classifying forest
successional stage at regional to continental scales via discrete return
lidar data would be cost prohibitive. However, multispectral data
could be employed to produce forest successional stage classifications
at these scales. Forthcoming spaceborne lidar missions such as NASA's
DESDynI, ICESat-II, and LIST may provide a means to characterize and
monitor forest successional stages at global scales. However, before
this is feasible research should be conducted to develop and evaluate
methods for classifying forest successional stage from large footprint
lidar systems.

5. Conclusions

We evaluated the efficacy of lidar height metrics to classify forest
successional stage across a structurally diverse, mixed-species forest
of the Inland Northwest, USA. Specifically, we hypothesized that a
classification algorithm employing a suite of lidar height metrics
characterizing the three-dimensional structure of forest canopies
would enable forest successional stage to be mapped with a high
accuracy. Indeed, the successional stage classifications presented
herein achieved overall accuracies higher than 90% (overall accuracies
for the seven-class and six-class models were 90.1% and 95.5%,
respectively). These results demonstrate that lidar data alone can
accurately characterize forest succession across large spatial extents.

The classifications produced in this study will be used to achieve
multiple sustainable forest management goals. Specifically, work is
currently underway to utilize the three-dimensional vegetation
structure information presented herein to advance the characteriza-
tion and modeling of wildlife habitats (see Vierling et al., 2008). This
work includes investigating the utility of lidar and topographic
metrics to quantify understory characteristics and other forest
attributes important for wildlife habitat assessment. Furthermore,
the forest successional stage classification will be used to parameter-
ize a forest succession model so that forest succession dynamics can
be modeled, with the ultimate goal of understanding the impact
different management regimes have upon future carbon storage in
the forest.
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